GRAVITATIONAL FIELD

Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com

The time for Io to complete one orbit of Jupiter is T.

Show that the time T is related to the mean density ρ of Jupiter by the expression

$$\rho T^2 = \frac{3\pi n^3}{G}$$

where G is the gravitational constant.

(c)	(i)	The radius <i>R</i> of Jupiter is 7.15×10^4 km and the distance between and Io is 4.32×10^5 km. The period <i>T</i> of the orbit of Io is 42.5 hours.	the centres of Jupiter
		Calculate the mean density $ ho$ of Jupiter.	
		ho =	kg m ⁻³ [3]
	(ii)	The Earth has a mean density of 5.5×10^3 kg m ⁻³ . It is said to be a By reference to your answer in (i), comment on the possible comp	planet made of rock. osition of Jupiter.
			[1]
2			(11-17) +2/ Q.1]
(a)	(a) Explain how a satellite may be in a circular orbit around a planet.		
			[2]
(b)	(b) The Earth and the Moon may be considered to be uniform spheres that are isolated in space. The Earth has radius R and mean density ρ . The Moon, mass m , is in a circular orbit about the Earth with radius nR , as illustrated in Fig. 1.1.		
		Earth	
		radius	7
		Moon	
		Fig. 1.1	Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com

(a)	Sho	w that the period \mathcal{T} of the orbit of the satellite is given by the expression
		$T^2 = \frac{4\pi^2 r^3}{GM}$
	whe	ere G is the gravitational constant. Explain your working.
		[3]
(b)	(i)	A satellite in geostationary orbit appears to remain above the same point on the Earth and has a period of 24 hours. State two other features of a <i>geostationary</i> orbit.
		1
		2
		[2]
	(ii)	The mass <i>M</i> of the Earth is 6.0×10^{24} kg. Use the expression in (a) to determine the radius of a geostationary orbit.
		rauius = m [2] Akhtar Mahmood (0333-4281759) M.Sc. (Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com

(c)	A global positioning system (GPS) satellite orbits the Earth at a height of 2.0×10^4 km above the Earth's surface. The radius of the Earth is 6.4×10^3 km.
	Use your answer in (b)(ii) and the expression
	$T^2 \propto r^3$
	to calculate, in hours, the period of the orbit of this satellite.
	period =
4. (a)	Define gravitational field strength.
	[1]
(b)	An isolated star has radius <i>R</i> . The mass of the star may be considered to be a point mass at the centre of the star. The gravitational field strength at the surface of the star is g_{e} .
	On Fig. 1.1, sketch a graph to show the variation of the gravitational field strength of the star with distance from its centre. You should consider distances in the range R to $4R$.
	1.0 <i>g</i> s
	0.8 <i>g</i> s
	gravitational field strength ^{0.6} g _s
	0.4 <i>g</i> s
	0.2 <i>g</i> s
	$0_R \qquad 2R \qquad 3R \qquad 4R$
	surface distance of star
Akhtar	Mahmood (0333-4281759) Fig. 1.1
MIS, DC. teacher_7	DAS/400e(IBM), OCP(PITB) 6@hotmail.com

(c)	The Earth and the Moon may be considered to be spheres that are isolated in space with their masses concentrated at their centres. The masses of the Earth and the Moon are 6.00×10^{24} kg and 7.40×10^{22} kg respectively. The radius of the Earth is $R_{\rm E}$ and the separation of the centres of the Earth and the Moon is $60R_{\rm E}$, as illustrated in Fig. 1.2.
6.0	Earth mass $0 \times 10^{24} \text{ kg}$ $60 R_{\text{E}}$ Moon mass 7.40 x 10 ²² kg
(i)	Fig. 1.2 (not to scale) Explain why there is a point between the Earth and the Moon at which the gravitational field strength is zero.
(ii)	
(iii)	distance =
	AKILIT VIAIMOOD (0535-4281759) M.Sc. (Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher 7,86@hotmail.com

A spherical planet has mass *M* and radius *R*.

The planet may be assumed to be isolated in space and to have its mass concentrated at its centre.

The planet spins on its axis with angular speed ω , as illustrated in Fig. 1.1.

A small object of mass *m* rests on the equator of the planet. The surface of the planet exerts a normal reaction force on the mass.

(a) State formulae, in terms of M, m, R and ω , for

(i) the gravitational force between the planet and the object,

(ii) the centripetal force required for circular motion of the small mass,

.....[1]

.....[1]

(iii) the normal reaction exerted by the planet on the mass.

.....[1]

(b)	(i)	Explain why the normal reaction on the mass will have different values at the equator and at the poles.		
		[2]		
	(ii)	The radius of the planet is 6.4×10^6 m. It completes one revolution in 8.6×10^4 s. Calculate the magnitude of the centripetal acceleration at		
		1. the equator,		
		acceleration = $m s^{-2}$ [2]		
		2. one of the poles.		
		acceleration = $m s^{-2}$ [1]		
(c)	Su aco	ggest two factors that could, in the case of a real planet, cause variations in the seleration of free fall at its surface.		
	1.			
	2.			
		נסן		
		[2] { <i>Nov 08/4/Q.1</i> }		

^[2]

(ii) The ratio M_1 / M_2 is equal to 3.0 and the separation of the stars is 3.2×1 Calculate the radii R_1 and R_2 .	Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, D AS/400e(IBM), OCP(PITB) teacher_786@hotmail.com
R	$m_1 = \dots m_n$
	[2]
(d) (i) By equating the expressions you have given in (a) and using the data calc determine the mass of one of the stars.	culated in (b) and (c),
mass of star (ii) State whether the answer in (i) is for the more massive or for the less ma	= kg
	[4]
7. (a) (i) On Fig. 7.1, draw lines to represent the gravitational field outside an isolated	uniform sphere.
Fig. 7.1 (ii) A second sphere has the same mass but a smaller radius. Suggest what differ patterns of field lines for the two spheres.	rence, if any, there is between the

2. gravitational potential energy,	Akhtar Mahmood (0333 M.Sc.(Physics), MCS, MBA-I MIS, DCE, D AS/400e(IBM), teacher_786@hotmail.com	-4281759) T, B.Ed. OCP(PITB)
3. total energy	change in potential energy =	J
 (ii) State whether this change in total energy is an 9. The Earth may be considered to be a uniform spherorbits the Earth such that the radius of the circular (a) Show that the linear speed v of the satellite is given by the satellite	Change in total energy = increase or a decrease. re with its mass <i>M</i> concentrated at its centre. A satellite of matrix orbit is <i>r</i> . iven by the expression. $= \sqrt{\left(\frac{GM}{r}\right)}.$	J [1] ass <i>m</i>
(b) For this satellite, write down expressions, in terms	s of G , M , m and r , for	[2]
(i) its kinetic energy,		
(ii) its gravitational potential energy	kinetic energy =	[1]
	potential energy =	[1]
(iii) its total energy		
	total energy =	[2]

(c) The total energy of the satellite gradually decreases. State and explain the effect of this decrease on

(i) the radius *r* of orbit
(ii) the speed *v* of the satellite

[2]

10. A rocket is launched from the surface of the Earth. Fig.10.1 gives data for the speed of the rocket at two heights above the Earth's surface, after the rocket engine has been switched off.

height / m	speed / ms ⁻¹	
$h_1 = 19.9 \times 10^6$	$v_1 = 5370$	
$h_2 = 22.7 \times 10^6$	$v_2 = 5090$	
Fig. 10.1		

The Earth may be assumed to be a uniform sphere of radius $R = 6.38 \times 10^6$ m, with its mass *M* concentrated at its centre. The rocket, after the engine has been switched off, has mass m.

(a)Write down an expression in terms of

(i) G, M, m, h_1, h_2 and R for the change in gravitational potential energy of the

rocket,.....[1] (ii) m, v_1 and v_2 for the change in kinetic energy of the

rocket	1	1
ТОСКЕТ	1	Т

(b) Using the expressions in (a), determine a value for the mass *M* of the Earth.

Akhtar Mahmood (0333-4281759) M.Sc.(Physics), MCS, MBA-IT, B.Ed. MIS, DCE, DAS/400e(IBM), OCP(PITB) teacher_786@hotmail.com